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Abstract

To assess the goodness-of-fit of a sample to a continuous random distribution, the
most popular approach has been based on measuring, using either L∞- or L2-norms, the
distance between the null hypothesis cumulative distribution function and the empirical
cumulative distribution function. Indeed, as far as I know, almost all the tests currently
available in R related to this issue (ks.test in package stats, ad.test in package AD-
GofTest, and ad.test, ad2.test, ks.test, v.test and w2.test in package truncgof)
use one of these two distances on cumulative distribution functions. This paper (i) pro-
poses dgeometric.test, a new implementation of the test that measures the discrepancy
between a sample kernel estimate of the density function and the null hypothesis den-
sity function on the L1-norm, (ii) introduces the GoFKernel package, and (iii) performs
a large simulation exercise to assess the calibration and sensitivity of the above listed
tests as well as the Fan’s test (Fan 1994), fan.test, also implemented in the GoFKernel
package. In addition to dgeometric.test and fan.test, the GoFKernel package adds a
couple of functions that R users might also find of interest: density.reflected extends
density, allowing the computation of consistent kernel density estimates for bounded
random variables, and random.function offers an ad-hoc and universal (although compu-
tational expensive and potentially inaccurate for long tail distributions) sampling method.
In light of the simulation results, we can conclude that (i) the tests implemented in the
truncgof package should not be used to assess goodness-of-fit (at least for non-truncated
distributions), (ii) the test fan.test shows an over-tendency to not reject the null hy-
pothesis, being visibly miscalibrated (at least in its default option, where the bandwidth
parameter is estimated using dpik from package KernSmooth), (iii) the tests ks.test

and ad.test show similar power, with ad.test being slightly preferable in large samples,
and (iv) dgeometric.test represents a good alternative given its satisfactory calibration
and its, in general, superior power in samples of medium and large sizes. As a counterpart
it entails more computational burden when the random generator of the null hypothesis
density function is not available in R and random.function must be used.
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1. Introduction

In the literature there are a number of non-parametric tests to assess whether a sample of
a continuous random variable comes from a specified distribution. In goodness-of-fit tests
the usual statistics are based on measuring, in some way, the discrepancy between either
the empirical cumulative distribution or density function and the corresponding theoretical
function. L∞-norm and L2-norm have been the most popular distance measures employed.
Indeed, the tests currently available in R (R Core Team 2015) to this issue (such as ks.test

from package stats, ad.test from package ADGofTest (Bellosta 2011), kuiper.test from
package circular1 and the tests ad.test, ad2.test, ks.test, v.test and w2.test available in
the package truncgof 2,3) use one of these two distances on cumulative distribution functions.

These are not however the unique dissimilarity criteria suggested in the literature to deal with
this problem. Some proposals can also be found using likelihood ratios, Kullback-Leibler di-
vergence and Renyi distance via entropy measures, or other closeness measures – see, e.g., Fan
and Gencay (1993), Zhang (2002), Mattheou and Karagrigoriou (2010), Vexler and Gurevich
(2010), or, Mashhadi (2011). Indeed, within these approaches, it is still possible to find in R
the dbEmplikeGOF package which provides a function, dbEmplikeGOF, for density based em-
pirical likelihood goodness-of-fit tests based on sample entropy (Miecznikowski, Vexler, and
Shepherd 2013). Unfortunately, the dbEmplikeGOF function currently only performs tests of
normality and uniformity and, therefore, does not offer a general solution.

In this paper, two tests operating on the density function are made available to R users through
the GoFKernel package. In particular, the GoFKernel package contains an implementation
of the Fan’s test (Fan 1994), which is based on the L2-distance, and a practical approximation
to compare, using the L1-norm, the discrepancy between a theoretical density function and a
sample kernel estimate of the density function (Cao and Lugosi 2005).4 The p values of a test
based on this distance can be easily computed by Monte Carlo simulation using statistical
software. The R functions collected in the GoFKernel package are designed to run this test
for (almost) any one-dimensional continuous random variable.

Although this paper deals exclusively with one-dimensional continuous random variables, the
test could be easily generalized to discrete variables. Its generalization to the useful case
of multivariate random variables entails the use of high dimensional density estimation and
it is less straightforward. Lindsay, Markatou, and Ray (2014) provide a discussion of the
issues entailed and an optimal method for identifying the appropriate bandwidth for use in
goodness-of-fit problems. Some proposals for goodness-of-fit tests for multivariate normal
vectors, using L2-distance and entropy measures, can be found in Bowman and Foster (1993)
and Anderson, Hall, and Titterington (1994). The relevance of these references also rests on

1It should be noted, however, that according to the circular reference manual the kuiper.test function
only “performs Kuiper’s one-sample test of uniformity on the circle” (Lund and Agostinelli 2013).

2Although all the truncgof tests are designed to deal with left-truncated data, they can be used with
non-truncated data without defining the threshold argument.

3The tests adup.test and ad2up.test also available in the truncgof package are especially designed to test
whether a distribution fits the data well in the upper tail and, therefore, they are tail biased – see, Chernobai,
Rachev, and Fabozzi (2005).

4The study of testing based on the L1-distance is not new and has its roots in Hoeffding and Wolfowitz (1958)
and LeCam (1973). Later, Györfi and van der Meulen (1991) proved the universal consistency of a similar
test based on the histogram estimator, Cao and Lugosi (2005) found general non-asymptotic bounds for the
power of the test, and Albers and Schaafsma (2008) provided a general table of critical values recommendable
in certain circumstances.
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the fact that both papers discuss bandwidth selection; an issue that, as we shall see when we
analyze the outcomes for Fan’s test, can be crucial in performance of L2-distance based tests.

The paper is structured as follows. A brief review of the main goodness-of-fit tests based
on comparing the distance between the empirical cumulative distribution function and the
corresponding theoretical function is performed in Section 2. This review is focused on those
tests currently programmed in R. Section 3 introduces theoretically the tests implemented in
the R package GoFKernel to measure the discrepancies between the null hypothesis density
function and an empirical kernel estimate. Section 4 describes and exemplifies the main
functions available in GoFKernel. In Section 5, a large simulation exercise comparing the
calibration (size), power (sensitivity), and speed of the different general goodness-of-fit tests
available in R is carried out for several distributions and sample sizes. Section 6 investigates
convergence of the dgeometric.test. Finally, Section 7 provides conclusions.

2. Tests based on the cumulative distribution function

The Kolmogorov-Smirnov test (KS) is probably the most widely known non-parametric good-
ness of fit test (ks.test from package stats, ks.test from package truncgof). The KS statis-
tic, Equation 1, quantifies at the sampled values, xi, and with the L∞-norm the maximum
(supremum) distance in absolute values between the empirical cumulative distribution func-
tion (ECDF) of the sample, Fn(xi), and the cumulative function of the reference distribution,
F (x). A distance that, as is well-known, converges to 0 if the sample comes from the reference
distribution.

KS = max
xi

|Fn(xi)− F (xi)| (1)

The KS test is however not considered to have good power (e.g., Stephens 1974), requiring a
relatively large number of data points to properly reject the null hypothesis (Frampton 2010),
and is moreover considered more sensitive to the part of the cumulative distribution above
the median (Johnson, Miller, and Freund 2011).

In addition to the KS test, within the ECDF testing strategy, we can find the Kuiper test
(v.test) and the family of Anderson-Darling tests (ad.test and ad2.test from package
truncgof and ad.test from package ADGofTest). The Kuiper test (Kuiper 1962) is closely
related to the KS test, being test statistic KP, Equation 2, defined as the sum of the maximum
positive and negative deviation between the empirical and theoretical cumulative distribu-
tions.

KP = max
xi

(i/n− F (xi)) + max
xi

(F (xi)− (i− 1)/n) (2)

This test is equally sensitive to differences along the entire range of the distribution and
compared to KS test has the advantage of being invariant under cyclic transformations5. It
shares however the limitations of the KS test.

The Anderson-Darling tests are another alternative to the KS test. In the same way as the KP
test, these tests provide equal sensitivity at both tails (although not maintaining the cyclic
invariance). In its simplest version (ad.test from package truncgof), it is a variance weighted
KS statistic based on the L∞-norm, Equation 3, and in its L2-norm variant (Anderson and

5This makes this test especially suitable to test circular probability distributions (Jammalamadaka and
Sengupta 2001) or to identify differences in spread (Press, Flannery, Teukolsky, and Vetterling 1992).
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Darling 1952), it is a generalization of the Cramer-von Mises test (w2.test from package
truncgof). In particular, the Anderson-Darling L2-norm variant is based on a quadratic ECDF
statistic measure, Equation 4, and has the advantage of taking into account the differences
between the empirical and theoretical cumulative distributions at all the sampled points.

AD = max
xi

∣∣∣∣ Fn(xi)− F (xi)

F (x) (1− F (x))

∣∣∣∣ , (3)

AD2 = n

∫ ∞
−∞

(Fn(x)− F (x))2w(x)dF (x). (4)

More specifically, the Cramer-von Mises test uses w(x) = 1 as weighting function, while the
Anderson-Darling test employs w(x) = [F (x)(1− F (x))]−1; a weighting function that places
more weight on observations in the tails of the distribution.

Other alternative tests also based on comparing empirical and theoretical cumulative functions
have been proposed by Watson (1961), Stephens (1964), and Pearson and Stephens (1962),
among others – see also Marsaglia and Marsaglia (2004).

3. Density function based tests

A large number of goodness-of-fit tests have also been proposed using empirical approxima-
tions to the density function. Indeed, the idea of using non-parametric empirical (kernel)
density estimators for goodness-of-fit tests goes back to Bickel and Rosenblatt (1973) and
Rosenblatt (1975). More recent work includes Bowman (1992), Ahmad and Cerrito (1993),
Fan (1994, 1998) and Fan and Ullah (1999), among those papers that base their tests on
the L2-error, and Cao and Lugosi (2005) and Albers and Schaafsma (2008), among the ap-
proaches employing L1-distances. In particular, following Fan (1994) and Cao and Lugosi
(2005), the statistical discrepancy measures used are based respectively on the integral of
the squared difference between an empirical kernel function estimate (EKF) of the unknown
density function and the null hypothesis density function to be tested, Ign,h, Equation 5, and
the integral of the absolute value difference, Tn,h, Equation 6.

Ign,h =

∫ ∞
−∞

(fn,h(x)− f(x))2 dx, (5)

Tn,h =

∫ ∞
−∞
|fn,h(x)− f(x)| dx, (6)

where fn,h(x) is a sample empirical h-bandwidth kernel estimation and f(x) is the density
function under the null hypothesis. Note that the values of the statistics depend on the
bandwidth selected.

After developing the sum of squares of Equation 5 and employing some empirical approxi-
mations, Fan (1994) proposed a bias-corrected test, later simplified in Li and Racine (2007,
pp. 380–381), which follows an asymptotic Gaussian distribution under some standard smooth-
ness assumptions and the condition that the kernel bandwidth tends to zero when its product
with the sample size tends to infinity. According to Cao and Lugosi (2005, p. 600), however,
L1 approaches are preferable to L2 ones since they allow one“to drop unnecessary assumptions
as well as to obtain non-asymptotic performance bounds”.
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Figure 1: The shaded areas are the values that are computed with the Tn,h statistic, Equa-
tion 6. The left figure has been obtained from a sample of size 500 from a U(0, 1), and the
right one from a sample of size 50 from a N(0, 1). Reference densities are marked in red using
dashed lines and empirical densities in blue with continuous lines.

To compute the p value of the test based on Equation 6, we can use numerical integration
and Monte Carlo simulation. After computing by numerical integration the area between
the density function under the null hypothesis and a sample empirical kernel estimator (see
Figure 1), we can obtain the p value of the test by simulation as follows: (i) drawing S samples
from f(x) with the same size n as our actual sample; (ii) estimating the kernel density function
fn,hs(x) for each of these new samples; (iii) computing the area between the theoretical density
and each of the estimates of (ii); and, (iv) calculating the p value as the proportion of times
the sample S areas computed in (iii) exceed the value of Tn,h obtained from the observed
sample. This approach resembles the strategy implemented in the package truncgof and is
quite close to the one suggested in Cao and Lugosi (2005) for computing the critical region of
the Tn,h statistic, given a significance level. On the one hand, the tests implemented in the
truncgof package compute the p value by resampling in a transformation of the (truncated)
distribution (Chernobai et al. 2005, p. 5), which under the null hypothesis follows a uniform
distribution. On the other hand, Cao and Lugosi (2005, p. 609) suggested a similar algorithm
to compute the threshold of the critical region of the test, but with a fixed bandwidth properly
chosen to minimize Tn,h under the null hypothesis. Indeed, Cao and Lugosi (2005, p. 599)
consider that the choice of the bandwidth “plays a crucial role in the performance of the test”.
Regarding the number of S samples needed to obtain a relatively accurate approximation of
the p value, although it depends on the particular null hypothesis density considered, it seems
that as a rule good results are obtained with just a hundred of samples (see Section 6). More
accurate approximations that require the increase of the number of samples can be obtained
at the expense of increased computational time.

4. Package GoFKernel

The algorithm described above to implement a test based on the Tn,h statistic as well as
the Fan’s test (with the simplification suggested in Li and Racine 2007, pp. 380–381 which
“should have better finite-sample properties” since it has an asymptotic zero center term) has



6 Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel

been programmed in the GoFKernel package. These two tests are implemented in the two
main functions of the package: fan.test and dgeometric.test. Section 4.1 explains the
fan.test function and Section 4.2 describes how the dgeometric.test works. Furthermore,
in Section 4.3 the rest of the functions of the package, a couple of which (density.reflected
and random.function) could be of interest for R practitioners, are presented.

4.1. Function fan.test

The function fan.test performs the Fan’s test (Fan 1994) in the variant proposed in Li and
Racine (2007, pp. 380–381). The programmed test is based on an asymptotic approximation
of Ign,h, Equation 5, to a normal distribution and analyzes the goodness-of-fit of a sample, via
a kernel density estimate, to a theoretical density function. In its default option, fan.test
uses the function dpik included in the package KernSmooth (Wand 2013) to estimate the
bandwidth6. Hence it requires that package to be available to run correctly. The function is
used as:

fan.test(x, fun.den, par = NULL, lower = -Inf, upper = Inf,

kernel = "normal", bw = NULL)

The arguments of the function are described as follows:

� x: a numeric vector of data values.

� fun.den: an actual density distribution function, such as dnorm. Only continuous
densities are valid.

� par: a list of additional parameters of the distribution specified, default NULL.

� lower: lower end point of the support of the variable characterized by fun.den, default
-Inf.

� upper: upper end point of the support of the variable characterized by fun.den, default
Inf.

� kernel: a character string with the kernel to be used, either "normal" (a N(0, 1)
density), "box" (a U(−1, 1) density) or "epanech" (an Epanechnikov quadratic kernel
density), default "normal".

� bw: a number indicating the bandwidth (parameter h in Equation 5) to be used in the
empirical kernel estimate of the data, default NULL. In its default option, the bandwidth
is estimated using the function dpik included in the package KernSmooth.

The output is an object of class ‘htest’ like for the Kolmogorov-Smirnov test, ks.test from
package stats. The output is a list containing the standardized value of the Ign,h statistic
(statistic), the p value of the test (p.value), the character string "Fan’s test" (method),
a character string giving the kernel used (kernel), and a character string giving the name of
the data (data.name).

6The method implemented in dpik for selecting the bandwidth of a kernel density estimate was proposed
by Sheather and Jones (1991) and is described in Section 3.6 of Wand and Jones (1995).
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As an example, firstly, a test is carried out to see if the null hypothesis of uniform distribution
can be accepted for a random sample of size 100 from a uniform distribution and, secondly, if
the object risk76.1929 available in GoFKernel follows the particular density function defined
by f(x) = 2− 2x for 0 < x < 1.

R> library("GoFKernel")

R> set.seed(125)

R> fan.test(runif(100), dunif, lower = 0, upper = 1)

Fan's test

data: runif(100)

Ig = -3.2061, p-value = 0.9993

In this example, the function fan.test computes for the simulated sample a value of −3.0261
for the standarization of Ign,h statistic and a p value of 0.9993.

R> f0 <- function(x) ifelse(x >= 0 & x <= 1, 2 - 2 * x, 0)

R> fan.test(risk76.1929, f0, lower = 0, upper = 1, kernel = "epanech")

Fan's test

data: risk76.1929

Ig = -3.8156, p-value = 0.9999

According to this output the Fan’s test points clearly to not reject – with a p value of 0.9999
– the null hypothesis for the risk76.1929 dataset.

4.2. Function dgeometric.test

The function dgeometric.test performs the test described in the last paragraph of Section 3.
The test is based on computing the area defined by the Tn,h statistic for the observed data. To
obtain the p value, the value of the statistic is then compared to the same area for a simulation
of samples, with the same size than the observed sample, drawn from the distribution stated
in the null hypothesis. The function uses a Gaussian kernel to estimate the kernel density
functions and, when available, employs the random generators programed in R. It is used as:

dgeometric.test(x, fun.den, par = NULL, lower = -Inf, upper = Inf,

n.sim = 101, bw = NULL)

The arguments of the function are described as follows:

� x: a numeric vector of data values.

� fun.den: an actual density distribution function, such as dnorm. Only continuous
densities are valid.

� par: a list of additional parameters of the distribution specified, default NULL.

� lower: lower end point of the support of the variable characterized by fun.den, default
-Inf.
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� upper: upper end point of the support of the variable characterized by fun.den, default
Inf.

� n.sim: number of iterations performed to calculate the p value, default 101.

� bw: a number indicating the bandwidth (parameter h in Equation 6) to be used in the
empirical kernel estimates, default NULL. In its default option, the bandwidth varies in
each simulated dataset and is the one provided by the function density under hypothesis
of a Gaussian kernel.

The output is an object of class ‘htest’ like for the Kolmogorov-Smirnov test, ks.test from
package stats. The output is a list containing the value of the Tn,h statistic (statistic), the
p value of the test (p.value), the character string "Geometric test" (method), the number
of simulations performed to calculate the p value (iterations), and a character string giving
the name of the data (data.name).

As an example, firstly, a test is carried out to see if the object risk76.1929 available in
GoFKernel follows the particular density function defined by f(x) = 2 − 2x for 0 < x < 1,
and, secondly, for a random sample of size 200 from a logNormal distribution, a test is carried
out to see if the null hypothesis of a Gamma distribution with sample MLE as parameters
can be accepted.

R> set.seed(158)

R> f0 <- function(x) ifelse(x >= 0 & x <= 1, 2 - 2 * x, 0)

R> dgeometric.test(risk76.1929, f0, lower = 0, upper = 1, n.sim = 51)

Geometric test

data: risk76.1929

Tn = 0.1143, p-value = 0.1373

According to this output, at the usual significance levels, the null hypothesis is not rejected
with an approximate p value of 0.1373. It is worth comparing this p value with the really
different p value obtained for the same dataset with the Fan’s test. As we shall see in Section 5,
it seems that Fan’s test tends to inflate p values, at least when the bandwidth is estimated
using the default option.

R> library("MASS")

R> set.seed(1)

R> x <- rlnorm(200, meanlog = 1, sdlog = 1)

R> dgeometric.test(x, dgamma, par = lapply(fitdistr(x, "gamma")$estimate,

+ function(i) i), lower = 0, upper = Inf, n.sim = 125)

Geometric test

data: x

Tn = 0.2080, p-value = 0.016

According to this output, at the usual significance level of 0.05, the null hypothesis of a
Gamma density is rejected for this simulated data with an approximate p value of 0.016.
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4.3. Other functions in GoFKernel

In addition to the functions fan.test and dgeometric.test, which perform respectively
Fan’s test and the L1 geometric test in the simulation form described at the end of Section 3,
the GoFKernel package includes the functions inverse, support.facto, random.function,
area.between and density.reflected. These five functions are (internal) functions neces-
sary to implement the geometric test. More specifically, (i) inverse computes the inverse
function of any given cumulative distribution function; (ii) support.facto determines for
a random variable with an infinity theoretical support its numerical de facto support; (iii)
random.function generates draws of any random variable given its density (or cumulative)
function; (iv) area.between numerically calculates the area between a theoretical density
function and an empirical kernel estimate (see Figure 1); and, (v) density.reflected com-
putes an empirical kernel estimate of a sample using, for bounded variables, reflection in the
borders – see, e.g., Silverman (1986). In addition, the risk76.1929 object contains a vector
with the annual fraction of the time exposed to risk of death with an age of 76 years for people
born in 1929 that immigrated to Spain during 2006. Under the null hypothesis of uniform
distribution of dates of birth and dates of immigration, the above time exposed to risk has as
density function f(x) = 2− 2x for 0 < x < 1 (Pav́ıa, Morillas, and Lledó 2012).

Of the above functions, the two of most interest for R users are: density.reflected and
random.function. The function density.reflected is based on the function density and
produces an output of the same class as density for bounded variables and the same output
for unbounded variables.7 For bounded variables, density.reflected avoids via reflection
the inconsistencies that density shows in the boundaries of the support of the random vari-
able. The random.function function offers an ad-hoc and universal (although computational
expensive and potentially inaccurate for long tail distributions) sampling method that allows
the drawing of samples of (almost) any one-dimensional continuous random variable. This
function makes it possible to implement the dgeometric.test even when the null hypothesis
density function is not available in the R environment and it must be directly provided by
the user. They are used as follows:

density.reflected(x, lower = -Inf, upper = Inf, ...)

The arguments of the function density.reflected are described as follows:

� x: a numeric vector of data values.

� lower: lower end point of the support of the variable from which x is supposed to come,
default -Inf.

� upper: upper end point of the support of the variable from which x is supposed to come,
default Inf.

� ...: further density arguments.

The arguments of the function random.function are described as follows:

random.function(n = 1, f, lower = -Inf, upper = Inf, kind = "density")

7The latter is true except for two small changes. The density.reflected function (i) always omits NAs and
(ii) significantly concentrates the kernel density around the unique observed value in degenerate samples.
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Figure 2: Left panel: Example of differences between using density and density.reflected

in computing a kernel density estimate for a bounded distribution for a U(0, 1) sample of size
1000. Right panel: Graphical representation of a sample generated using random.function.
A kernel density estimate (using density.reflected) of a sample of size 300 of the theoretical
function f(x) = 2− 2x for 0 < x < 1 is displayed in the panel.

� n: number of samples to be drawn, default 1.

� f: either a density (default) or cumulative distribution function of the random variable
to be sampled.

� lower: lower end point of the support of the random variable characterized by f, default
-Inf.

� upper: upper end point of the support of the random characterized by f, default Inf.

� kind: a character string identifying the kind of function used to identify the distribution,
either "density" (default) or "cumulative", as alternative.

To exemplify how these functions work and to show their usefulness, Figure 2 displays
graphically (i) the different kernel estimates that are obtained using functions density and
density.reflected for a bounded variable (left panel) and (ii) how a sample can be drawn
using random.function for a random variable even though its random generator is not avail-
able in R (right panel). The code used to generate Figure 2 is also provided.

R> dev.new(width = 40, height = 15)

R> par(mfcol = c(1, 2), mai = c(0.5, 0.9, .3, .3))

R> set.seed(789)

R> x <- runif(1000)

R> curve(dunif, from = 0, to = 1, ylab = "density", ylim = c(0.6, 1.2),

+ xlab = "")

R> points(density(x, from = 0, to = 1), type = "l", col = "blue")

R> points(density.reflected(x, lower = 0, upper = 1), type = "l",

+ col = "red")

R> segments(0, 1.2, 0.05, 1.2, col = "black")
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R> text(0.28, 1.2, "Theoretical density: U(0,1)", cex = 0.75)

R> segments(0, 1.17, 0.05, 1.17, col = "red")

R> text(0.374, 1.17, "Kernel estimate using density.reflected", cex = 0.75)

R> segments(0, 1.14, 0.05, 1.14, col = "blue")

R> text(0.309, 1.14, "Kernel estimate using density", cex = 0.75)

R> set.seed(942)

R> f0 <- function(x) ifelse(x >= 0 & x <= 1, 2 - 2 * x, 0)

R> curve(f0, from = 0, to = 1, ylab = "density", ylim = c(0,2.25),

+ xlab = "")

R> x <- random.function(300, f0, 0, 1)

R> points(density.reflected(x, lower = 0, upper = 1), type = "l",

+ col = "red")

R> segments(0, 2.25, 0.05, 2.25, col = "black")

R> text(0.30, 2.25, "Theoretical density: f(x)=2-2x", cex = 0.75)

R> segments(0, 2.13, 0.05, 2.13, col = "red")

R> text(0.379, 2.13, "Kernel estimate using density.reflected",

+ cex = 0.75)

5. A comparison of the ECDF and EKF approaches

The fan.test and dgeometric.test functions available in GoFKernel offer EKF goodness-
of-fit alternatives to the ECDF tests currently available in R (ks.test in stats, ad.test

in ADGofTest, and ad.test, ad2.test, ks.test, v.test and w2.test in truncgof). In
this section, we assess through simulation the calibration (Section 5.1) and sensitivity power
(Section 5.2) of all these functions. The speed of the default options of these functions is
also studied (Section 5.3). To analyze the size and power of the tests, the significance level
is fixed at α = 0.05 and the proportion of times that the stated null hypothesis is incorrectly
(correctly) rejected is examined for several sample sizes (10, 20, 50, 100, 200 and 500) and
random distributions. A thousand samples are simulated for each combination of sample size
and random distribution and the above nine tests applied to these simulated samples.

As just presenting the proportion of times the p values are under 0.05 in each scenario8 can hide
relevant issues, the actual p value distributions have been displayed for a sample of scenarios
in order to provide further insights and to reinforce the comments that are derived from the
chosen summary statistic. In particular, as a consequence of the specifications employed in
the simulation exercises, within the calibration scenarios a test is considered to have a good
size when its p value distribution is approximately uniform. On the other hand, in sensitivity
scenarios the clustering of p values around zero will be an indicator of a proper power of the
corresponding test.

5.1. Calibration of the tests

To analyze the calibration of the tests, we study for some instances to what extend the size
of the test (the actual proportion of times that a true null hypothesis is rejected) equals the
nominal significance level of the test. This is a standard procedure that in the current study

8Each combination of a null hypothesis, an actual distribution, and a sample size defines a scenario.
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Reference value 0.050 Sample size
The closer to 0.050 the better 10 20 50 100 200 500

Test function Null hypothesis: U(0, 1)
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U
(0
,1

)

ks.test {stats} 0.045 0.059 0.046 0.043 0.051 0.053
ad.test {ADGofTest} 0.053 0.058 0.050 0.055 0.058 0.045
ad.test {truncgof} 1.000 1.000 1.000 1.000 1.000 1.000
ad2.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
ks.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
v.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
w2.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
fan.test 0.004 0.019 0.006 0.000 0.000 0.000
dgeometric.test 0.046 0.071 0.049 0.058 0.058 0.062

Test function Null hypothesis: N(0, 1)

A
ct

u
al

d
is
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ti

on

N
(0
,1

)

ks.test {stats} 0.038 0.051 0.033 0.046 0.047 0.048
ad.test {ADGofTest} 0.037 0.055 0.046 0.042 0.052 0.051
ad.test {truncgof} 0.184 0.125 0.078 0.071 0.073 0.051
ad2.test {truncgof} 0.482 0.505 0.482 0.502 0.471 0.433
ks.test {truncgof} 0.360 0.379 0.373 0.364 0.329 0.305
v.test {truncgof} 0.156 0.157 0.128 0.150 0.154 0.140
w2.test {truncgof} 0.443 0.465 0.438 0.438 0.422 0.399
fan.test 0.016 0.027 0.014 0.016 0.004 0.000
dgeometric.test 0.065 0.076 0.068 0.063 0.072 0.063

Test function Null hypothesis: Exp(1)
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E
x
p
(1

)

ks.test {stats} 0.041 0.052 0.047 0.038 0.053 0.053
ad.test {ADGofTest} 0.035 0.054 0.049 0.042 0.056 0.049
ad.test {truncgof} 0.071 0.082 0.054 0.052 0.054 0.049
ad2.test {truncgof} 0.212 0.221 0.217 0.226 0.221 0.233
ks.test {truncgof} 0.173 0.172 0.175 0.187 0.177 0.182
v.test {truncgof} 0.064 0.079 0.065 0.082 0.079 0.065
w2.test {truncgof} 0.239 0.222 0.198 0.244 0.232 0.229
fan.test 0.013 0.008 0.001 0.000 0.000 0.000
dgeometric.test 0.055 0.070 0.073 0.074 0.069 0.065

Test function Null hypothesis: logN(1, 1)
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ks.test {stats} 0.033 0.056 0.051 0.045 0.043 0.063
ad.test {ADGofTest} 0.037 0.050 0.059 0.055 0.050 0.062
ad.test {truncgof} 0.201 0.132 0.092 0.073 0.063 0.058
ad2.test {truncgof} 0.477 0.497 0.478 0.498 0.487 0.466
ks.test {truncgof} 0.348 0.370 0.358 0.355 0.337 0.330
v.test {truncgof} 0.162 0.153 0.162 0.141 0.134 0.148
w2.test {truncgof} 0.443 0.447 0.456 0.442 0.431 0.437
fan.test 0.012 0.006 0.005 0.001 0.000 0.000
dgeometric.test 0.085 0.073 0.074 0.052 0.065 0.064

Table 1: Proportion of times the true null hypothesis is rejected at a significance level of
0.05. Elaborated using R version 3.1.0 (R Core Team 2015), ADGofTest 0.3 (Bellosta 2011),
GoFKernel 2.0-3 (Pav́ıa 2015), KernSmooth 2.23-12 (Wand 2013), and truncgof 0.6-0 (Wolter
2012).
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has been performed in scenarios when the samples come from (i) a uniform distribution on
the interval [0, 1], U(0, 1), (ii) a standard normal distribution, N(0, 1), (iii) an exponential
distribution of rate (and mean) equal to 1, Exp(1), and (iv) a logNormal distribution whose
logarithm has mean equal to 1 and standard deviation equal to 1, logN(1, 1).

Focusing on the outputs of Table 19 the first issue that comes to our attention is the bad
behavior of truncgof functions as a whole. Indeed, analyzing the p values attained for the
U(0, 1) scenarios (see also Figure 3, where the default density.reflected kernel density
estimates of p values for a group of U(0, 1) scenarios are presented), it seems that these
functions are not useful for bounded variables. The truncgof package produces (almost)
systematically p values equal to 1 for three of its functions (ks.test from package truncgof,
v.test and w2.test) and really clustered distributions, around 0 and 1, for, respectively,
ad.test and ad2.test functions from package truncgof. In the remaining scenarios the
picture for the truncgof functions is also quite demoralizing, their frequency in rejecting the
null hypotheses is clearly above the expected figure of 0.05. The only function of this package
that shows reasonable figures for several of the (unbounded) variables is ad.test from package
truncgof, which registers acceptable rejecting rates for large samples in N(0, 1) and logN(1, 1)
scenarios and adequate rates in the Exp(1) scenarios. In Exp(1) scenarios, there is another
function of the package, v.test, that also shows acceptable figures. The same conclusions
can be extracted observing Figures 4, 5 and 6, where the default density.reflected kernel
estimates of the p value distributions have been presented for a sample of scenarios.

The above results for the truncgof package functions are really unexpected. Although the
truncgof package (Wolter 2012) is intended to deal with the issue for left truncated distribu-
tions, looking at the theoretical paper that supports this package (Chernobai et al. 2005) there
are no apparent reasons for this weird behavior. Indeed, except for a constant factor (which
is a function of the number of observations, n, of the sample to be tested), the statistics that
are (should be) implemented in the truncgof collapse to the non-truncated ones introduced
in Equations 1–4 when the threshold is kept at its default option.10

For the rest of the functions, the results highlight that the fan.test function clearly has an
over-tendency to accept the null hypothesis, an unambiguous sign of miscalibration of the test
(at least in its default options). This miscalibration is even exacerbated in the scenarios with
right-asymmetric distributions (see Figures 3 to 6). Finally, as results in Table 1 show and
pictures in Figures 3 to 6 confirm, the outcomes for the rest of the functions are adequate.
As a rule, nevertheless, it could be said that the ks.test function from package stats and the
ad.test function from package ADGofTest show a test size slightly smaller than expected
and that dgeometric.test shows a size slightly greater.

9The numbers in the table must be observed as approximations to the actual sizes of the tests. Obviously,
different figures would have been obtained with a different set of simulated samples. As a reference, and
by comparison with a different set of simulations (not presented here), a variation as large as ±0.02 in the
estimation of the size of a test might be considered as non-unusual. Hence, those tests whose values in the
tables vary within the range [.03, .07] could be observed, in general, as well-calibrated.

10In its default option, the truncgof tests set the threshold in -Inf. (Although this is not documented in the
help file of the package, it can be easily observed looking inside the functions.) This issue entails the estimated
cumulative distribution function to be zero in the threshold and, consequently, the stated equivalence, see
Tables 1 and 2 in Chernobai et al. (2005, pp. 20–21).
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Figure 3: Kernel estimates of the p values distributions for different hypothesis tests for
the scenario defined by a sample size of 20 and U(0, 1) for both null hypothesis and actual
distribution. Reference distribution marked with a red dashed line.

Figure 4: Kernel estimates of the p values distributions for different hypothesis tests for
the scenario defined by a sample size of 50 and N(0, 1) for both null hypothesis and actual
distribution. Reference distribution marked with a red dashed line.
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Figure 5: Kernel estimates of the p values distributions for different hypothesis tests for the
scenario defined by a sample size of 100 and Exp(1) for both null hypothesis and actual
distribution. Reference distribution marked with a red dashed line.

Figure 6: Kernel estimates of the p values distributions for different hypothesis tests for the
scenario defined by a sample size of 200 and logN(1, 1) for both null hypothesis and actual
distribution. Reference distribution marked with a red dashed line.
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5.2. Sensitivity of the tests

The power of a statistical test is the probability that the test rejects the null hypothesis
when the null hypothesis is indeed false. To study how sensitive the rejection rules of the
tests are to false null hypotheses, we study some scenarios where their discriminant power is
challenged. That is, we consider situations in which the random distributions stated in the
null hypotheses are chosen to be close (in shape) to the actual distributions generating the
data. More specifically, we consider couples where the actual and null hypothesis densities
are, respectively: (i) a Beta with both shape parameters equal to 1.3, Be(1.3, 1.3), and a
[0, 1] uniform distribution, U(0, 1); (ii) a standard Cauchy11, Ca(0, 1), and a N(0, σ̂), where
σ̂ is the standard deviation of the sample, (iii) a Gamma with both shape and rate equal
to 0.9, Ga(0, 9, 0.9) and a Exp(1), and (iv) a logN(1, 1) and a Ga(α̂, β̂), where α̂ and β̂ are
respectively the shape and rate MLE.

The summary outcomes of the sensitivity analysis are presented in Table 2. Focusing firstly
on the Be(1.3, 1.3)− U(0, 1) scenarios, the non-usefulness of truncgof tests for bounded ran-
dom variables is confirmed (see also Figure 7). In line with previous results, they produce
systematically extreme p values irrespectively of the sample. Regarding the rest of the tests,
we observe (both in Table 2 and in Figure 7) the Fan test showing again the really conserva-
tive behavior demonstrated in the calibration analysis. This conservative behavior also occurs
for small-size samples in the remaining tests, although at a lower level. These three tests are
not equivalent, however. The ad.test function from package ADGofTest looks preferable to
ks.test from package stats, and dgeometric.test is the function showing the higher power
in this case, although its figures for really small sample sizes are indeed modest.

The Ca(0, 1)−N(0, σ̂) scenarios are the ones with the greatest differences between the actual
and null hypothesis distributions. This is reflected in the rejection rates of all the tests that
show really high figures in all the cases, except for the smallest sample sizes. The ks.test

from package stats and ad.test from package ADGofTest functions are the more reluctant
to correctly reject the null hypothesis with small sizes, whereas the truncgof functions seem
to have the greatest powers now (see Table 2 and Figure 8). This superiority of truncgof
functions is, however, more apparent than real, observing N(0, 1) outcomes in Table 1. It
highlights also the amount of simulations for which no solution is offered by some functions of,
mainly, the truncgof package. The functions ad.test and ad2.test from package truncgof
produced an error 221, 546 and 635 times for, respectively, samples of sizes 100, 200 and 500.
Likewise, the fan.test function generated a total of seven errors.12

Focusing now on the Ga(0.9, 0.9)− Exp(1) scenarios we observe that in general all the tests
experience great difficulties in discriminating between the actual distribution generating the
sample and the null hypothesis distribution. This is especially true if we take into account (and
discount) the results obtained in Section 5.1 for Exp(1) scenarios (see Table 1 and Figure 5)
for some of the truncgof functions (ad2.test, ks.test and w2.test), which show a clear
over-tendency to reject the real Exp(1) null hypothesis. EKF tests do not offer this time an
alternative to be considered. In this case the EKF tests are the ones showing the lower powers.
In practice, fan.test is unable to discriminate between both models and dgeometric.test

is, unlike the rest of the functions, not able to significantly improve their power in the largest

11A Cauchy distribution with location parameter equal to 0 and scale parameter equal to 1.
12It could be tracked that the errors registered with the fan.test function had their origin in the computation

of the integral of the convolution of the density in the sampled values. This computation is made using the
integrate function.
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Reference value 1.000 Sample size
The closer to 1.000 the better 10 20 50 100 200 500

Test function Null hypothesis: U(0, 1)
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1
.3
,1
.3

)

ks.test {stats} 0.028 0.043 0.057 0.070 0.141 0.457
ad.test {ADGofTest} 0.018 0.025 0.043 0.091 0.259 0.835
ad.test {truncgof} 1.000 1.000 1.000 1.000 1.000 1.000
ad2.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
ks.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
v.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
w2.test {truncgof} 0.000 0.000 0.000 0.000 0.000 0.000
fan.test 0.008 0.021 0.013 0.029 0.019 0.023
dgeometric.test 0.046 0.069 0.131 0.243 0.478 0.923
Test function Null hypothesis: N(0, σ̂)
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d
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n

C
a
(0
,1

)

ks.test {stats} 0.147 0.513 0.947 0.997 1.000 1.000
ad.test {ADGofTest} 0.107 0.502 0.955 0.999 1.000 1.000
ad.test {truncgof} (1) 0.646 0.844 0.988 0.997 1.000 1.000
ad2.test {truncgof} (1) 0.747 0.902 0.999 1.000 1.000 1.000
ks.test {truncgof} 0.665 0.870 0.998 1.000 1.000 1.000
v.test {truncgof} 0.553 0.838 0.996 1.000 1.000 1.000
w2.test {truncgof} 0.720 0.894 0.998 1.000 1.000 1.000
fan.test {GoFKernel} (2) 0.285 0.703 0.988 1.000 1.000 1.000
dgeometric.test 0.253 0.704 0.995 1.000 1.000 1.000
Test function Null hypothesis: Exp(1)
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a
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,0
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ks.test {stats} 0.058 0.063 0.068 0.076 0.086 0.162
ad.test {ADGofTest} 0.058 0.069 0.087 0.108 0.113 0.236
ad.test {truncgof} 0.145 0.122 0.111 0.124 0.119 0.122
ad2.test {truncgof} 0.257 0.285 0.281 0.349 0.369 0.567
ks.test {truncgof} 0.186 0.208 0.203 0.234 0.245 0.403
v.test {truncgof} 0.085 0.098 0.111 0.131 0.159 0.281
w2.test {truncgof} 0.240 0.261 0.246 0.303 0.324 0.471
fan.test 0.009 0.010 0.001 0.000 0.000 0.000
dgeometric.test 0.056 0.060 0.061 0.042 0.032 0.046

Test function Null hypothesis: Ga(α̂, β̂)
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ks.test {stats} 0.002 0.014 0.046 0.147 0.464 0.980
ad.test {ADGofTest} 0.000 0.003 0.023 0.141 0.527 0.997
ad.test {truncgof} (3) 0.113 0.196 0.375 0.533 0.735 0.934
ad2.test {truncgof} (3) 0.101 0.235 0.504 0.816 0.989 1.000
ks.test {truncgof} 0.099 0.190 0.381 0.662 0.933 0.999
v.test {truncgof} 0.080 0.174 0.340 0.616 0.927 1.000
w2.test {truncgof} 0.098 0.214 0.465 0.786 0.984 1.000
fan.test 0.005 0.043 0.118 0.143 0.182 0.469
dgeometric.test 0.021 0.042 0.104 0.220 0.489 0.949

Table 2: Proportion of times the false null hypothesis is rejected at a significance level of
0.05. Elaborated using R version 3.1.0 (R Core Team 2015), ADGofTest 0.3 (Bellosta 2011),
GoFKernel 2.0-3 (Pav́ıa 2015), KernSmooth 2.23-10 (Wand 2013), MASS 7.3-31 (Venables
and Ripley 2002), and truncgof 0.6-0 (Wolter 2012). (1) An error is produced 221, 446 and
635 times for, respectively, samples of sizes 100, 200 and 500. (2) This function produced an
error 4, 2 and 1 times for, respectively, samples of sizes 10, 20 and 100. (3) These functions
produced an error 11 times for samples of size 500.
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Figure 7: Kernel estimates of the p values distributions for different hypothesis tests for the
scenario defined by a U(0, 1) as null hypothesis, a Be(1.3, 1.3) as actual distribution and a
sample size of 100. Reference distribution marked with a red dashed line.

Figure 8: Kernel estimates of the p values distributions for different hypothesis tests for the
scenario defined by a N(0, σ̂) as null hypothesis, a Ca(0, 1) as actual distribution and a sample
size of 10. Reference distribution marked with a red dashed line.
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Figure 9: Kernel estimates of the p values distributions for different hypothesis tests for the
scenario defined by a Exp(1) as null hypothesis, a Ga(0.9, 0.9) as actual distribution and a
sample size of 20. Reference distribution marked with a red dashed line.

Figure 10: Kernel estimates of the p values distributions for different hypothesis tests for the
scenario defined by a logN(1, 1) as null hypothesis, a Ga(α̂, β̂) as actual distribution and a
sample size of 500. Reference distribution marked with a red dashed line.
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sample size case.

The picture for the logN(1, 1)−Ga(α̂, β̂) scenarios serves to reinforce the conclusions reached
after analyzing Be(1.3, 1.3)−U(0, 1) scenarios and Ca(0, 1)−N(0, σ̂) scenarios. Discounting
again for the over-tendency of truncgof functions to reject the true null hypothesis, massively
present in logN(1, 1) scenarios (see Table 1), it becomes evident that the superior power
that truncgof tests exhibit in small samples is a matter of illusion. The possibilities that the
Gamma distribution offers to mimic logNormal models is reflected in the lower powers that all
the tests show in small samples, which nevertheless grow significantly as sample sizes increase.
They all need a relatively large number of observations to properly reject the null hypothe-
sis. The worst power is registered by the fan.test function, without doubt a consequence
of its over-tendency to accept null hypotheses. On the other hand, regarding the outcomes
for ks.test from package stats, ad.test from package ADGofTest and dgeometric.test,
we observe that the three functions show similar power, with dgeometric.test presenting
nonetheless greater power in medium-size samples. Finally, in these scenarios, it also high-
lights the fact that some of the functions, (ad.test and ad2.test from package truncgof),
experience an error in some of the simulations.13

5.3. Speeds of the tests

Although the speed of the studied functions is not of concern when just a bunch of tests must
be performed14, the computational burden could become an issue when we are interested
in carrying out hundreds of thousands (like in our simulation exercise) or millions of tests.
So, this section is devoted to analyzing the time spent by the different functions during the
simulation exercise.

The first issue that clearly emerges in this analysis is that the analyzed functions, when used
with their default options, can be clustered in four groups in terms of velocity. A group of
ks.test from package stats and ad.test from package ADGofTest (so called sup-tests),
a group with all the truncgof functions (truncgof-tests) and two more groups, each one
with just a function: dgeometric.test and fan.test. The group with the fastest functions
is sup-tests, whereas the truncgof functions are as a rule the slowest. The fan.test and
dgeometric.test are in an intermediate position, with dgeometric.test faster with large
sample sizes and slower with small sample sizes. In particular, considering all the scenarios as
a whole, the time spent per sample has been on average 0.0015, 0.0714, 0.3027 and 0.5392 secs
for, respectively, sup-tests, dgeometric.test, fan.test and truncgof-tests functions.15

In an analysis by scenarios (see Figure 11), the first result that stands out is the regularity
that speeds of sup-tests and dgeometric.test functions show, not significantly varying
among scenarios and sample sizes16; when, on the contrary, truncgof-tests and fan.test

functions’ velocities vary both across scenarios and sample sizes.

13As happened with the errors recorded in Ca(0, 1)−N(0, σ̂) scenarios for the truncgof functions, the problem
seems to be in the internal function mctest of the truncgof package.

14In our simulation exercise, none of the tests needed more than a few seconds to produce its output and
the vast majority of them spent much less than a second.

15These numbers have been obtained after running our simulations in a I7 3,4GHz 6 cores processor computer,
with 16GB (DDR3) of RAM memory and a SSD 250GB hard disk, using R version 3.1.0 (2014-04-10) (R
Core Team 2015) for Windows (platform x86 64-w64-mingw32/x64 (64-bit)) and, as packages, ADGofTest 0.3
(Bellosta 2011), GoFKernel 2.0-3 (Pav́ıa 2015), KernSmooth 2.23-12 (Wand 2013), MASS 7.3-31 (Venables and
Ripley 2002), and truncgof 0.6-0 (Wolter 2012).

16The only small exceptions to this rule among the scenarios studied (not observable in Figure 11 as a
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Figure 11: Average time spent per sample, in seconds, for sup-group (ks.test {stats}
and ad.test {ADGofTest}), fan.test, truncgof-group (ad.test {truncgof}, ad2.test,
ks.test {truncgof}, v.test and w2.test), and dgeometric.test functions (employed with
their default options). For more details, see Footnote 15.

Focusing on the truncgof-tests and fan.test groups of functions, Figure 11 highlights
the great similarities that their speed curves show between scenarios with the same null
hypothesis. The only exception to this rule seems to be in the Ca(0, 1) − N(0, σ̂) case,
where the fan.test function needs a significant extra-time to properly deal with the Cauchy
samples. Indeed, with the exception of this case, conditioned to the sample size, the time spent

matter of scale) occur in logN(1, 1) − Ga(α̂, β̂) scenarios, where the time spent for the sup-tests functions
and for the dgeometric.test function grows with sample size. In the latter case, however, the relatively slight
increases recorded for the dgeometric.test function suggest that the reason behind this behavior is more in
the MLE routines than in the test itself. Finally, it should also be noted that the average time spent per test
by sup-tests functions in logN(1, 1) −Ga(α̂, β̂) scenarios also grows with regards to the other scenarios. For
example, it grows from an average of 0.0004 (0.0002) secs per test to an average of 0.0291 (0.0022) secs for the
largest (smallest) sample size. Anyway, these tests still remain by large the fastest.
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per test by the fan.test function does not vary that much across scenarios. The behavior
of the truncgof-tests functions is, nevertheless, more volatile. They show variability both
across scenarios and sample sizes.

6. On convergence of dgeometric.test

The dgeometric.test function uses n.sim = 101 as default option to approximate p values.
The convergence of the estimation algorithm is, however, asymptotic. So, the question of
whether 101 simulated samples are enough as to obtain a relative accurate approximation of
p values emerges in a natural way.

To try to give an answer to this question, the actual p values corresponding to the samples
generated in our simulation exercise have also been computed17 and compared to the ones
obtained with the default option.

A summary of the comparisons made between approximate and actual p values is offered in
Table 3. In particular, in each scenario, Table 3 (i) counts the proportion of times that the
default option approximation offers the correct solution at the usual significant levels (α = 0.1,
α = 0.05 and α = 0.01), (ii) the correlation between actual and approximate p values and (iii)
the mean and standard deviation of the absolute differences between actual and approximate
p values.

Looking at the numbers in Table 3, it could be argued that the outcomes that produces
the dgeometric.test function with default options can be considered adequate. The dif-
ferences observed, both in absolute values and in terms of the proportion of times that the
dgeometric.test function with default options does not hold the correct decision, are indeed
within the limits of the uncertainty linked with the process. For example, with a significant
level of α = 0.05, the percentage of decision coincidences in calibration scenarios is as large
as 98 per cent, when as we noted in Section 5.1 the volatility in the estimation of the p values
is as large as ±0.02, even for well-established test like the KS test (ks.test from package
stats). Some deviations like the ones observed are therefore reasonable.

As a final note of interest, it is worth mentioning that as expected when the null hypothesis
is clearly rejected by the data (as happened in the Ca(0, 1)−N(0, σ̂) scenarios) the estimated
p values are less sensitive to the number of simulated samples employed.

7. Conclusions

This paper introduces a new solution for the non-parametric goodness-of-fit test based on the
test statistic that measures the distance in absolute value (i.e., the area) between an empirical
kernel estimate of the observations and a null hypothesis (one-dimensional continuous) density
function. This test in addition to the Fan’s test (Fan 1994) has been implemented in the
GoFKernel package, which is presented in this paper. A comparative analysis with the other
general non-parametric goodness-of-fit tests currently available in R reveals that: (i) the tests
implemented in the truncgof package are non-usefulness for bounded variables, presenting
moreover in unbounded variables a clear over-tendency to reject the null hypothesis; and

17To do that, n.sim = 1000 has been used in the dgeometric.function and the attained p values considered
as reference p values.
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10 0.967 0.970 0.993 0.989 0.033 0.026
20 0.981 0.980 0.979 0.990 0.033 0.027 20 0.954 0.979 0.987 0.989 0.033 0.028
50 0.966 0.988 0.983 0.989 0.033 0.027 50 0.960 0.963 0.968 0.989 0.032 0.027
100 0.969 0.976 0.988 0.989 0.034 0.028 100 0.946 0.956 0.938 0.988 0.029 0.028
200 0.977 0.981 0.984 0.991 0.031 0.026 200 0.945 0.920 0.901 0.988 0.021 0.023
500 0.971 0.976 0.991 0.988 0.034 0.027 500 0.985 0.978 0.910 0.969 0.006 0.010

N
(0
,1

)
S
ce

n
ar

io
s

10 0.977 0.979 0.987 0.990 0.032 0.027

C
a
(0
,1

)

S
ce

n
ar

io
s

10 0.941 0.942 0.950 0.992 0.027 0.025
20 0.966 0.977 0.983 0.989 0.033 0.027 20 0.983 0.965 0.912 0.995 0.013 0.020
50 0.977 0.971 0.986 0.989 0.032 0.027 50 0.999 1.000 0.992 0.990 0.000 0.004
100 0.978 0.984 0.988 0.989 0.032 0.028 100 1.000 1.000 1.000 0.949 0.000 0.000
200 0.967 0.978 0.987 0.990 0.032 0.028 200 1.000 1.000 1.000 1.000 0.000 0.000
500 0.967 0.983 0.984 0.990 0.032 0.027 500 1.000 1.000 1.000 1.000 0.000 0.000

E
x
p
(1

)
S
ce

n
ar

io
s

10 0.964 0.984 0.989 0.990 0.032 0.028

G
a
(0
.9
,0
.9

)

S
ce

n
ar

io
s

10 0.974 0.982 0.988 0.990 0.033 0.027
20 0.971 0.981 0.986 0.991 0.031 0.027 20 0.964 0.986 0.988 0.990 0.032 0.026
50 0.972 0.980 0.986 0.990 0.032 0.028 50 0.975 0.980 0.982 0.991 0.031 0.027
100 0.974 0.980 0.986 0.990 0.031 0.027 100 0.973 0.975 0.991 0.991 0.031 0.026
200 0.972 0.980 0.989 0.988 0.034 0.029 200 0.979 0.988 0.993 0.988 0.034 0.028
500 0.976 0.977 0.985 0.990 0.032 0.027 500 0.984 0.984 0.995 0.990 0.032 0.026

lo
g
N

(1
,1

)
S
ce

n
ar

io
s

10 0.995 0.997 0.991 0.984 0.034 0.028

G
a
(α̂
,β̂

)
S
ce

n
ar

io
s

10 0.979 0.988 0.993 0.989 0.036 0.028
20 0.978 0.975 0.983 0.989 0.033 0.027 20 0.983 0.983 0.992 0.984 0.033 0.028
50 0.977 0.980 0.981 0.990 0.032 0.026 50 0.973 0.980 0.990 0.991 0.032 0.027
100 0.966 0.984 0.985 0.990 0.031 0.027 100 0.960 0.955 0.955 0.992 0.029 0.026
200 0.976 0.975 0.985 0.990 0.033 0.027 200 0.947 0.928 0.910 0.988 0.021 0.024
500 0.977 0.986 0.985 0.989 0.033 0.029 500 0.992 0.982 0.931 0.973 0.004 0.009

Table 3: Differences in performance of dgeometric.test function with default options and
with n.sim = 1000. Elaborated using R version 3.1.0 (R Core Team 2015), GoFKernel 2.0-3
(Pav́ıa 2015) and MASS 7.3-31 (Venables and Ripley 2002).

that, on the contrary, (ii) the fan.test function shows an over-tendency to accept the null
hypothesis, at least in its default option (where the bandwidth is computed using the dpik

function of KernSmooth package). The analysis also show that (iii) the tests implemented in
ks.test in package stats, ad.test in package ADGofTest and dgeometric.test functions
represent the best alternatives, with the last function showing more frequently superior power
in samples of medium and large sizes, although at the cost of a higher computational burden
(see Section 5.3).

In summary, taking aside computational costs and combining the statistical conclusions of
Sections 5.1 and 5.2, it seems that: (i) to test uniformity, the dgeometric.test function
offers the preferable test for samples of small and medium size, with ks.test from pack-
age stats and ad.test from package ADGofTest being competitive as soon as the sample size
grows; (ii) to test normality, all the three recommended tests offer good performance, with the
dgeometric.test function being superior in samples of small size; (iii) to test goodness-of-fit
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to an exponential distribution, no solution is adequate for small sample sizes, with both ver-
sions of the AD test (ad.test from package ADGofTest and ad.test from package truncgof)
improving their numbers starting from samples of medium size; and (iv) to test goodness-of-fit
to a logNormal distribution, the dgeometric.test function is slightly preferable to ks.test

from package stats and ad.test from package ADGofTest, with no test offering good dis-
criminant power between the logNormal distribution and the Gamma distribution in samples
of small size.

The GoFKernel package is of course incomplete and as part of future work it should grow
incorporating other EKF based tests and/or improving the flexibility of their methods.
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